001 /* 002 * Copyright 2001-2010 Stephen Colebourne 003 * 004 * Licensed under the Apache License, Version 2.0 (the "License"); 005 * you may not use this file except in compliance with the License. 006 * You may obtain a copy of the License at 007 * 008 * http://www.apache.org/licenses/LICENSE-2.0 009 * 010 * Unless required by applicable law or agreed to in writing, software 011 * distributed under the License is distributed on an "AS IS" BASIS, 012 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 013 * See the License for the specific language governing permissions and 014 * limitations under the License. 015 */ 016 package org.joda.time.tz; 017 018 import java.io.DataInput; 019 import java.io.DataInputStream; 020 import java.io.DataOutput; 021 import java.io.DataOutputStream; 022 import java.io.IOException; 023 import java.io.InputStream; 024 import java.io.OutputStream; 025 import java.text.DateFormatSymbols; 026 import java.util.ArrayList; 027 import java.util.Arrays; 028 import java.util.HashSet; 029 import java.util.Iterator; 030 import java.util.Locale; 031 import java.util.Set; 032 033 import org.joda.time.Chronology; 034 import org.joda.time.DateTime; 035 import org.joda.time.DateTimeUtils; 036 import org.joda.time.DateTimeZone; 037 import org.joda.time.Period; 038 import org.joda.time.PeriodType; 039 import org.joda.time.chrono.ISOChronology; 040 041 /** 042 * DateTimeZoneBuilder allows complex DateTimeZones to be constructed. Since 043 * creating a new DateTimeZone this way is a relatively expensive operation, 044 * built zones can be written to a file. Reading back the encoded data is a 045 * quick operation. 046 * <p> 047 * DateTimeZoneBuilder itself is mutable and not thread-safe, but the 048 * DateTimeZone objects that it builds are thread-safe and immutable. 049 * <p> 050 * It is intended that {@link ZoneInfoCompiler} be used to read time zone data 051 * files, indirectly calling DateTimeZoneBuilder. The following complex 052 * example defines the America/Los_Angeles time zone, with all historical 053 * transitions: 054 * 055 * <pre> 056 * DateTimeZone America_Los_Angeles = new DateTimeZoneBuilder() 057 * .addCutover(-2147483648, 'w', 1, 1, 0, false, 0) 058 * .setStandardOffset(-28378000) 059 * .setFixedSavings("LMT", 0) 060 * .addCutover(1883, 'w', 11, 18, 0, false, 43200000) 061 * .setStandardOffset(-28800000) 062 * .addRecurringSavings("PDT", 3600000, 1918, 1919, 'w', 3, -1, 7, false, 7200000) 063 * .addRecurringSavings("PST", 0, 1918, 1919, 'w', 10, -1, 7, false, 7200000) 064 * .addRecurringSavings("PWT", 3600000, 1942, 1942, 'w', 2, 9, 0, false, 7200000) 065 * .addRecurringSavings("PPT", 3600000, 1945, 1945, 'u', 8, 14, 0, false, 82800000) 066 * .addRecurringSavings("PST", 0, 1945, 1945, 'w', 9, 30, 0, false, 7200000) 067 * .addRecurringSavings("PDT", 3600000, 1948, 1948, 'w', 3, 14, 0, false, 7200000) 068 * .addRecurringSavings("PST", 0, 1949, 1949, 'w', 1, 1, 0, false, 7200000) 069 * .addRecurringSavings("PDT", 3600000, 1950, 1966, 'w', 4, -1, 7, false, 7200000) 070 * .addRecurringSavings("PST", 0, 1950, 1961, 'w', 9, -1, 7, false, 7200000) 071 * .addRecurringSavings("PST", 0, 1962, 1966, 'w', 10, -1, 7, false, 7200000) 072 * .addRecurringSavings("PST", 0, 1967, 2147483647, 'w', 10, -1, 7, false, 7200000) 073 * .addRecurringSavings("PDT", 3600000, 1967, 1973, 'w', 4, -1, 7, false, 7200000) 074 * .addRecurringSavings("PDT", 3600000, 1974, 1974, 'w', 1, 6, 0, false, 7200000) 075 * .addRecurringSavings("PDT", 3600000, 1975, 1975, 'w', 2, 23, 0, false, 7200000) 076 * .addRecurringSavings("PDT", 3600000, 1976, 1986, 'w', 4, -1, 7, false, 7200000) 077 * .addRecurringSavings("PDT", 3600000, 1987, 2147483647, 'w', 4, 1, 7, true, 7200000) 078 * .toDateTimeZone("America/Los_Angeles", true); 079 * </pre> 080 * 081 * @author Brian S O'Neill 082 * @see ZoneInfoCompiler 083 * @see ZoneInfoProvider 084 * @since 1.0 085 */ 086 public class DateTimeZoneBuilder { 087 /** 088 * Decodes a built DateTimeZone from the given stream, as encoded by 089 * writeTo. 090 * 091 * @param in input stream to read encoded DateTimeZone from. 092 * @param id time zone id to assign 093 */ 094 public static DateTimeZone readFrom(InputStream in, String id) throws IOException { 095 if (in instanceof DataInput) { 096 return readFrom((DataInput)in, id); 097 } else { 098 return readFrom((DataInput)new DataInputStream(in), id); 099 } 100 } 101 102 /** 103 * Decodes a built DateTimeZone from the given stream, as encoded by 104 * writeTo. 105 * 106 * @param in input stream to read encoded DateTimeZone from. 107 * @param id time zone id to assign 108 */ 109 public static DateTimeZone readFrom(DataInput in, String id) throws IOException { 110 switch (in.readUnsignedByte()) { 111 case 'F': 112 DateTimeZone fixed = new FixedDateTimeZone 113 (id, in.readUTF(), (int)readMillis(in), (int)readMillis(in)); 114 if (fixed.equals(DateTimeZone.UTC)) { 115 fixed = DateTimeZone.UTC; 116 } 117 return fixed; 118 case 'C': 119 return CachedDateTimeZone.forZone(PrecalculatedZone.readFrom(in, id)); 120 case 'P': 121 return PrecalculatedZone.readFrom(in, id); 122 default: 123 throw new IOException("Invalid encoding"); 124 } 125 } 126 127 /** 128 * Millisecond encoding formats: 129 * 130 * upper two bits units field length approximate range 131 * --------------------------------------------------------------- 132 * 00 30 minutes 1 byte +/- 16 hours 133 * 01 minutes 4 bytes +/- 1020 years 134 * 10 seconds 5 bytes +/- 4355 years 135 * 11 millis 9 bytes +/- 292,000,000 years 136 * 137 * Remaining bits in field form signed offset from 1970-01-01T00:00:00Z. 138 */ 139 static void writeMillis(DataOutput out, long millis) throws IOException { 140 if (millis % (30 * 60000L) == 0) { 141 // Try to write in 30 minute units. 142 long units = millis / (30 * 60000L); 143 if (((units << (64 - 6)) >> (64 - 6)) == units) { 144 // Form 00 (6 bits effective precision) 145 out.writeByte((int)(units & 0x3f)); 146 return; 147 } 148 } 149 150 if (millis % 60000L == 0) { 151 // Try to write minutes. 152 long minutes = millis / 60000L; 153 if (((minutes << (64 - 30)) >> (64 - 30)) == minutes) { 154 // Form 01 (30 bits effective precision) 155 out.writeInt(0x40000000 | (int)(minutes & 0x3fffffff)); 156 return; 157 } 158 } 159 160 if (millis % 1000L == 0) { 161 // Try to write seconds. 162 long seconds = millis / 1000L; 163 if (((seconds << (64 - 38)) >> (64 - 38)) == seconds) { 164 // Form 10 (38 bits effective precision) 165 out.writeByte(0x80 | (int)((seconds >> 32) & 0x3f)); 166 out.writeInt((int)(seconds & 0xffffffff)); 167 return; 168 } 169 } 170 171 // Write milliseconds either because the additional precision is 172 // required or the minutes didn't fit in the field. 173 174 // Form 11 (64 bits effective precision, but write as if 70 bits) 175 out.writeByte(millis < 0 ? 0xff : 0xc0); 176 out.writeLong(millis); 177 } 178 179 /** 180 * Reads encoding generated by writeMillis. 181 */ 182 static long readMillis(DataInput in) throws IOException { 183 int v = in.readUnsignedByte(); 184 switch (v >> 6) { 185 case 0: default: 186 // Form 00 (6 bits effective precision) 187 v = (v << (32 - 6)) >> (32 - 6); 188 return v * (30 * 60000L); 189 190 case 1: 191 // Form 01 (30 bits effective precision) 192 v = (v << (32 - 6)) >> (32 - 30); 193 v |= (in.readUnsignedByte()) << 16; 194 v |= (in.readUnsignedByte()) << 8; 195 v |= (in.readUnsignedByte()); 196 return v * 60000L; 197 198 case 2: 199 // Form 10 (38 bits effective precision) 200 long w = (((long)v) << (64 - 6)) >> (64 - 38); 201 w |= (in.readUnsignedByte()) << 24; 202 w |= (in.readUnsignedByte()) << 16; 203 w |= (in.readUnsignedByte()) << 8; 204 w |= (in.readUnsignedByte()); 205 return w * 1000L; 206 207 case 3: 208 // Form 11 (64 bits effective precision) 209 return in.readLong(); 210 } 211 } 212 213 private static DateTimeZone buildFixedZone(String id, String nameKey, 214 int wallOffset, int standardOffset) { 215 if ("UTC".equals(id) && id.equals(nameKey) && 216 wallOffset == 0 && standardOffset == 0) { 217 return DateTimeZone.UTC; 218 } 219 return new FixedDateTimeZone(id, nameKey, wallOffset, standardOffset); 220 } 221 222 // List of RuleSets. 223 private final ArrayList<RuleSet> iRuleSets; 224 225 public DateTimeZoneBuilder() { 226 iRuleSets = new ArrayList<RuleSet>(10); 227 } 228 229 /** 230 * Adds a cutover for added rules. The standard offset at the cutover 231 * defaults to 0. Call setStandardOffset afterwards to change it. 232 * 233 * @param year the year of cutover 234 * @param mode 'u' - cutover is measured against UTC, 'w' - against wall 235 * offset, 's' - against standard offset 236 * @param monthOfYear the month from 1 (January) to 12 (December) 237 * @param dayOfMonth if negative, set to ((last day of month) - ~dayOfMonth). 238 * For example, if -1, set to last day of month 239 * @param dayOfWeek from 1 (Monday) to 7 (Sunday), if 0 then ignore 240 * @param advanceDayOfWeek if dayOfMonth does not fall on dayOfWeek, advance to 241 * dayOfWeek when true, retreat when false. 242 * @param millisOfDay additional precision for specifying time of day of cutover 243 */ 244 public DateTimeZoneBuilder addCutover(int year, 245 char mode, 246 int monthOfYear, 247 int dayOfMonth, 248 int dayOfWeek, 249 boolean advanceDayOfWeek, 250 int millisOfDay) 251 { 252 if (iRuleSets.size() > 0) { 253 OfYear ofYear = new OfYear 254 (mode, monthOfYear, dayOfMonth, dayOfWeek, advanceDayOfWeek, millisOfDay); 255 RuleSet lastRuleSet = iRuleSets.get(iRuleSets.size() - 1); 256 lastRuleSet.setUpperLimit(year, ofYear); 257 } 258 iRuleSets.add(new RuleSet()); 259 return this; 260 } 261 262 /** 263 * Sets the standard offset to use for newly added rules until the next 264 * cutover is added. 265 * @param standardOffset the standard offset in millis 266 */ 267 public DateTimeZoneBuilder setStandardOffset(int standardOffset) { 268 getLastRuleSet().setStandardOffset(standardOffset); 269 return this; 270 } 271 272 /** 273 * Set a fixed savings rule at the cutover. 274 */ 275 public DateTimeZoneBuilder setFixedSavings(String nameKey, int saveMillis) { 276 getLastRuleSet().setFixedSavings(nameKey, saveMillis); 277 return this; 278 } 279 280 /** 281 * Add a recurring daylight saving time rule. 282 * 283 * @param nameKey the name key of new rule 284 * @param saveMillis the milliseconds to add to standard offset 285 * @param fromYear the first year that rule is in effect, MIN_VALUE indicates 286 * beginning of time 287 * @param toYear the last year (inclusive) that rule is in effect, MAX_VALUE 288 * indicates end of time 289 * @param mode 'u' - transitions are calculated against UTC, 'w' - 290 * transitions are calculated against wall offset, 's' - transitions are 291 * calculated against standard offset 292 * @param monthOfYear the month from 1 (January) to 12 (December) 293 * @param dayOfMonth if negative, set to ((last day of month) - ~dayOfMonth). 294 * For example, if -1, set to last day of month 295 * @param dayOfWeek from 1 (Monday) to 7 (Sunday), if 0 then ignore 296 * @param advanceDayOfWeek if dayOfMonth does not fall on dayOfWeek, advance to 297 * dayOfWeek when true, retreat when false. 298 * @param millisOfDay additional precision for specifying time of day of transitions 299 */ 300 public DateTimeZoneBuilder addRecurringSavings(String nameKey, int saveMillis, 301 int fromYear, int toYear, 302 char mode, 303 int monthOfYear, 304 int dayOfMonth, 305 int dayOfWeek, 306 boolean advanceDayOfWeek, 307 int millisOfDay) 308 { 309 if (fromYear <= toYear) { 310 OfYear ofYear = new OfYear 311 (mode, monthOfYear, dayOfMonth, dayOfWeek, advanceDayOfWeek, millisOfDay); 312 Recurrence recurrence = new Recurrence(ofYear, nameKey, saveMillis); 313 Rule rule = new Rule(recurrence, fromYear, toYear); 314 getLastRuleSet().addRule(rule); 315 } 316 return this; 317 } 318 319 private RuleSet getLastRuleSet() { 320 if (iRuleSets.size() == 0) { 321 addCutover(Integer.MIN_VALUE, 'w', 1, 1, 0, false, 0); 322 } 323 return iRuleSets.get(iRuleSets.size() - 1); 324 } 325 326 /** 327 * Processes all the rules and builds a DateTimeZone. 328 * 329 * @param id time zone id to assign 330 * @param outputID true if the zone id should be output 331 */ 332 public DateTimeZone toDateTimeZone(String id, boolean outputID) { 333 if (id == null) { 334 throw new IllegalArgumentException(); 335 } 336 337 // Discover where all the transitions occur and store the results in 338 // these lists. 339 ArrayList<Transition> transitions = new ArrayList<Transition>(); 340 341 // Tail zone picks up remaining transitions in the form of an endless 342 // DST cycle. 343 DSTZone tailZone = null; 344 345 long millis = Long.MIN_VALUE; 346 int saveMillis = 0; 347 348 int ruleSetCount = iRuleSets.size(); 349 for (int i=0; i<ruleSetCount; i++) { 350 RuleSet rs = iRuleSets.get(i); 351 Transition next = rs.firstTransition(millis); 352 if (next == null) { 353 continue; 354 } 355 addTransition(transitions, next); 356 millis = next.getMillis(); 357 saveMillis = next.getSaveMillis(); 358 359 // Copy it since we're going to destroy it. 360 rs = new RuleSet(rs); 361 362 while ((next = rs.nextTransition(millis, saveMillis)) != null) { 363 if (addTransition(transitions, next)) { 364 if (tailZone != null) { 365 // Got the extra transition before DSTZone. 366 break; 367 } 368 } 369 millis = next.getMillis(); 370 saveMillis = next.getSaveMillis(); 371 if (tailZone == null && i == ruleSetCount - 1) { 372 tailZone = rs.buildTailZone(id); 373 // If tailZone is not null, don't break out of main loop until 374 // at least one more transition is calculated. This ensures a 375 // correct 'seam' to the DSTZone. 376 } 377 } 378 379 millis = rs.getUpperLimit(saveMillis); 380 } 381 382 // Check if a simpler zone implementation can be returned. 383 if (transitions.size() == 0) { 384 if (tailZone != null) { 385 // This shouldn't happen, but handle just in case. 386 return tailZone; 387 } 388 return buildFixedZone(id, "UTC", 0, 0); 389 } 390 if (transitions.size() == 1 && tailZone == null) { 391 Transition tr = transitions.get(0); 392 return buildFixedZone(id, tr.getNameKey(), 393 tr.getWallOffset(), tr.getStandardOffset()); 394 } 395 396 PrecalculatedZone zone = PrecalculatedZone.create(id, outputID, transitions, tailZone); 397 if (zone.isCachable()) { 398 return CachedDateTimeZone.forZone(zone); 399 } 400 return zone; 401 } 402 403 private boolean addTransition(ArrayList<Transition> transitions, Transition tr) { 404 int size = transitions.size(); 405 if (size == 0) { 406 transitions.add(tr); 407 return true; 408 } 409 410 Transition last = transitions.get(size - 1); 411 if (!tr.isTransitionFrom(last)) { 412 return false; 413 } 414 415 // If local time of new transition is same as last local time, just 416 // replace last transition with new one. 417 int offsetForLast = 0; 418 if (size >= 2) { 419 offsetForLast = transitions.get(size - 2).getWallOffset(); 420 } 421 int offsetForNew = last.getWallOffset(); 422 423 long lastLocal = last.getMillis() + offsetForLast; 424 long newLocal = tr.getMillis() + offsetForNew; 425 426 if (newLocal != lastLocal) { 427 transitions.add(tr); 428 return true; 429 } 430 431 transitions.remove(size - 1); 432 return addTransition(transitions, tr); 433 } 434 435 /** 436 * Encodes a built DateTimeZone to the given stream. Call readFrom to 437 * decode the data into a DateTimeZone object. 438 * 439 * @param out the output stream to receive the encoded DateTimeZone 440 * @since 1.5 (parameter added) 441 */ 442 public void writeTo(String zoneID, OutputStream out) throws IOException { 443 if (out instanceof DataOutput) { 444 writeTo(zoneID, (DataOutput)out); 445 } else { 446 writeTo(zoneID, (DataOutput)new DataOutputStream(out)); 447 } 448 } 449 450 /** 451 * Encodes a built DateTimeZone to the given stream. Call readFrom to 452 * decode the data into a DateTimeZone object. 453 * 454 * @param out the output stream to receive the encoded DateTimeZone 455 * @since 1.5 (parameter added) 456 */ 457 public void writeTo(String zoneID, DataOutput out) throws IOException { 458 // pass false so zone id is not written out 459 DateTimeZone zone = toDateTimeZone(zoneID, false); 460 461 if (zone instanceof FixedDateTimeZone) { 462 out.writeByte('F'); // 'F' for fixed 463 out.writeUTF(zone.getNameKey(0)); 464 writeMillis(out, zone.getOffset(0)); 465 writeMillis(out, zone.getStandardOffset(0)); 466 } else { 467 if (zone instanceof CachedDateTimeZone) { 468 out.writeByte('C'); // 'C' for cached, precalculated 469 zone = ((CachedDateTimeZone)zone).getUncachedZone(); 470 } else { 471 out.writeByte('P'); // 'P' for precalculated, uncached 472 } 473 ((PrecalculatedZone)zone).writeTo(out); 474 } 475 } 476 477 /** 478 * Supports setting fields of year and moving between transitions. 479 */ 480 private static final class OfYear { 481 static OfYear readFrom(DataInput in) throws IOException { 482 return new OfYear((char)in.readUnsignedByte(), 483 (int)in.readUnsignedByte(), 484 (int)in.readByte(), 485 (int)in.readUnsignedByte(), 486 in.readBoolean(), 487 (int)readMillis(in)); 488 } 489 490 // Is 'u', 'w', or 's'. 491 final char iMode; 492 493 final int iMonthOfYear; 494 final int iDayOfMonth; 495 final int iDayOfWeek; 496 final boolean iAdvance; 497 final int iMillisOfDay; 498 499 OfYear(char mode, 500 int monthOfYear, 501 int dayOfMonth, 502 int dayOfWeek, boolean advanceDayOfWeek, 503 int millisOfDay) 504 { 505 if (mode != 'u' && mode != 'w' && mode != 's') { 506 throw new IllegalArgumentException("Unknown mode: " + mode); 507 } 508 509 iMode = mode; 510 iMonthOfYear = monthOfYear; 511 iDayOfMonth = dayOfMonth; 512 iDayOfWeek = dayOfWeek; 513 iAdvance = advanceDayOfWeek; 514 iMillisOfDay = millisOfDay; 515 } 516 517 /** 518 * @param standardOffset standard offset just before instant 519 */ 520 public long setInstant(int year, int standardOffset, int saveMillis) { 521 int offset; 522 if (iMode == 'w') { 523 offset = standardOffset + saveMillis; 524 } else if (iMode == 's') { 525 offset = standardOffset; 526 } else { 527 offset = 0; 528 } 529 530 Chronology chrono = ISOChronology.getInstanceUTC(); 531 long millis = chrono.year().set(0, year); 532 millis = chrono.monthOfYear().set(millis, iMonthOfYear); 533 millis = chrono.millisOfDay().set(millis, iMillisOfDay); 534 millis = setDayOfMonth(chrono, millis); 535 536 if (iDayOfWeek != 0) { 537 millis = setDayOfWeek(chrono, millis); 538 } 539 540 // Convert from local time to UTC. 541 return millis - offset; 542 } 543 544 /** 545 * @param standardOffset standard offset just before next recurrence 546 */ 547 public long next(long instant, int standardOffset, int saveMillis) { 548 int offset; 549 if (iMode == 'w') { 550 offset = standardOffset + saveMillis; 551 } else if (iMode == 's') { 552 offset = standardOffset; 553 } else { 554 offset = 0; 555 } 556 557 // Convert from UTC to local time. 558 instant += offset; 559 560 Chronology chrono = ISOChronology.getInstanceUTC(); 561 long next = chrono.monthOfYear().set(instant, iMonthOfYear); 562 // Be lenient with millisOfDay. 563 next = chrono.millisOfDay().set(next, 0); 564 next = chrono.millisOfDay().add(next, iMillisOfDay); 565 next = setDayOfMonthNext(chrono, next); 566 567 if (iDayOfWeek == 0) { 568 if (next <= instant) { 569 next = chrono.year().add(next, 1); 570 next = setDayOfMonthNext(chrono, next); 571 } 572 } else { 573 next = setDayOfWeek(chrono, next); 574 if (next <= instant) { 575 next = chrono.year().add(next, 1); 576 next = chrono.monthOfYear().set(next, iMonthOfYear); 577 next = setDayOfMonthNext(chrono, next); 578 next = setDayOfWeek(chrono, next); 579 } 580 } 581 582 // Convert from local time to UTC. 583 return next - offset; 584 } 585 586 /** 587 * @param standardOffset standard offset just before previous recurrence 588 */ 589 public long previous(long instant, int standardOffset, int saveMillis) { 590 int offset; 591 if (iMode == 'w') { 592 offset = standardOffset + saveMillis; 593 } else if (iMode == 's') { 594 offset = standardOffset; 595 } else { 596 offset = 0; 597 } 598 599 // Convert from UTC to local time. 600 instant += offset; 601 602 Chronology chrono = ISOChronology.getInstanceUTC(); 603 long prev = chrono.monthOfYear().set(instant, iMonthOfYear); 604 // Be lenient with millisOfDay. 605 prev = chrono.millisOfDay().set(prev, 0); 606 prev = chrono.millisOfDay().add(prev, iMillisOfDay); 607 prev = setDayOfMonthPrevious(chrono, prev); 608 609 if (iDayOfWeek == 0) { 610 if (prev >= instant) { 611 prev = chrono.year().add(prev, -1); 612 prev = setDayOfMonthPrevious(chrono, prev); 613 } 614 } else { 615 prev = setDayOfWeek(chrono, prev); 616 if (prev >= instant) { 617 prev = chrono.year().add(prev, -1); 618 prev = chrono.monthOfYear().set(prev, iMonthOfYear); 619 prev = setDayOfMonthPrevious(chrono, prev); 620 prev = setDayOfWeek(chrono, prev); 621 } 622 } 623 624 // Convert from local time to UTC. 625 return prev - offset; 626 } 627 628 public boolean equals(Object obj) { 629 if (this == obj) { 630 return true; 631 } 632 if (obj instanceof OfYear) { 633 OfYear other = (OfYear)obj; 634 return 635 iMode == other.iMode && 636 iMonthOfYear == other.iMonthOfYear && 637 iDayOfMonth == other.iDayOfMonth && 638 iDayOfWeek == other.iDayOfWeek && 639 iAdvance == other.iAdvance && 640 iMillisOfDay == other.iMillisOfDay; 641 } 642 return false; 643 } 644 645 /* 646 public String toString() { 647 return 648 "[OfYear]\n" + 649 "Mode: " + iMode + '\n' + 650 "MonthOfYear: " + iMonthOfYear + '\n' + 651 "DayOfMonth: " + iDayOfMonth + '\n' + 652 "DayOfWeek: " + iDayOfWeek + '\n' + 653 "AdvanceDayOfWeek: " + iAdvance + '\n' + 654 "MillisOfDay: " + iMillisOfDay + '\n'; 655 } 656 */ 657 658 public void writeTo(DataOutput out) throws IOException { 659 out.writeByte(iMode); 660 out.writeByte(iMonthOfYear); 661 out.writeByte(iDayOfMonth); 662 out.writeByte(iDayOfWeek); 663 out.writeBoolean(iAdvance); 664 writeMillis(out, iMillisOfDay); 665 } 666 667 /** 668 * If month-day is 02-29 and year isn't leap, advances to next leap year. 669 */ 670 private long setDayOfMonthNext(Chronology chrono, long next) { 671 try { 672 next = setDayOfMonth(chrono, next); 673 } catch (IllegalArgumentException e) { 674 if (iMonthOfYear == 2 && iDayOfMonth == 29) { 675 while (chrono.year().isLeap(next) == false) { 676 next = chrono.year().add(next, 1); 677 } 678 next = setDayOfMonth(chrono, next); 679 } else { 680 throw e; 681 } 682 } 683 return next; 684 } 685 686 /** 687 * If month-day is 02-29 and year isn't leap, retreats to previous leap year. 688 */ 689 private long setDayOfMonthPrevious(Chronology chrono, long prev) { 690 try { 691 prev = setDayOfMonth(chrono, prev); 692 } catch (IllegalArgumentException e) { 693 if (iMonthOfYear == 2 && iDayOfMonth == 29) { 694 while (chrono.year().isLeap(prev) == false) { 695 prev = chrono.year().add(prev, -1); 696 } 697 prev = setDayOfMonth(chrono, prev); 698 } else { 699 throw e; 700 } 701 } 702 return prev; 703 } 704 705 private long setDayOfMonth(Chronology chrono, long instant) { 706 if (iDayOfMonth >= 0) { 707 instant = chrono.dayOfMonth().set(instant, iDayOfMonth); 708 } else { 709 instant = chrono.dayOfMonth().set(instant, 1); 710 instant = chrono.monthOfYear().add(instant, 1); 711 instant = chrono.dayOfMonth().add(instant, iDayOfMonth); 712 } 713 return instant; 714 } 715 716 private long setDayOfWeek(Chronology chrono, long instant) { 717 int dayOfWeek = chrono.dayOfWeek().get(instant); 718 int daysToAdd = iDayOfWeek - dayOfWeek; 719 if (daysToAdd != 0) { 720 if (iAdvance) { 721 if (daysToAdd < 0) { 722 daysToAdd += 7; 723 } 724 } else { 725 if (daysToAdd > 0) { 726 daysToAdd -= 7; 727 } 728 } 729 instant = chrono.dayOfWeek().add(instant, daysToAdd); 730 } 731 return instant; 732 } 733 } 734 735 /** 736 * Extends OfYear with a nameKey and savings. 737 */ 738 private static final class Recurrence { 739 static Recurrence readFrom(DataInput in) throws IOException { 740 return new Recurrence(OfYear.readFrom(in), in.readUTF(), (int)readMillis(in)); 741 } 742 743 final OfYear iOfYear; 744 final String iNameKey; 745 final int iSaveMillis; 746 747 Recurrence(OfYear ofYear, String nameKey, int saveMillis) { 748 iOfYear = ofYear; 749 iNameKey = nameKey; 750 iSaveMillis = saveMillis; 751 } 752 753 public OfYear getOfYear() { 754 return iOfYear; 755 } 756 757 /** 758 * @param standardOffset standard offset just before next recurrence 759 */ 760 public long next(long instant, int standardOffset, int saveMillis) { 761 return iOfYear.next(instant, standardOffset, saveMillis); 762 } 763 764 /** 765 * @param standardOffset standard offset just before previous recurrence 766 */ 767 public long previous(long instant, int standardOffset, int saveMillis) { 768 return iOfYear.previous(instant, standardOffset, saveMillis); 769 } 770 771 public String getNameKey() { 772 return iNameKey; 773 } 774 775 public int getSaveMillis() { 776 return iSaveMillis; 777 } 778 779 public boolean equals(Object obj) { 780 if (this == obj) { 781 return true; 782 } 783 if (obj instanceof Recurrence) { 784 Recurrence other = (Recurrence)obj; 785 return 786 iSaveMillis == other.iSaveMillis && 787 iNameKey.equals(other.iNameKey) && 788 iOfYear.equals(other.iOfYear); 789 } 790 return false; 791 } 792 793 public void writeTo(DataOutput out) throws IOException { 794 iOfYear.writeTo(out); 795 out.writeUTF(iNameKey); 796 writeMillis(out, iSaveMillis); 797 } 798 799 Recurrence rename(String nameKey) { 800 return new Recurrence(iOfYear, nameKey, iSaveMillis); 801 } 802 803 Recurrence renameAppend(String appendNameKey) { 804 return rename((iNameKey + appendNameKey).intern()); 805 } 806 } 807 808 /** 809 * Extends Recurrence with inclusive year limits. 810 */ 811 private static final class Rule { 812 final Recurrence iRecurrence; 813 final int iFromYear; // inclusive 814 final int iToYear; // inclusive 815 816 Rule(Recurrence recurrence, int fromYear, int toYear) { 817 iRecurrence = recurrence; 818 iFromYear = fromYear; 819 iToYear = toYear; 820 } 821 822 public int getFromYear() { 823 return iFromYear; 824 } 825 826 public int getToYear() { 827 return iToYear; 828 } 829 830 public OfYear getOfYear() { 831 return iRecurrence.getOfYear(); 832 } 833 834 public String getNameKey() { 835 return iRecurrence.getNameKey(); 836 } 837 838 public int getSaveMillis() { 839 return iRecurrence.getSaveMillis(); 840 } 841 842 public long next(final long instant, int standardOffset, int saveMillis) { 843 Chronology chrono = ISOChronology.getInstanceUTC(); 844 845 final int wallOffset = standardOffset + saveMillis; 846 long testInstant = instant; 847 848 int year; 849 if (instant == Long.MIN_VALUE) { 850 year = Integer.MIN_VALUE; 851 } else { 852 year = chrono.year().get(instant + wallOffset); 853 } 854 855 if (year < iFromYear) { 856 // First advance instant to start of from year. 857 testInstant = chrono.year().set(0, iFromYear) - wallOffset; 858 // Back off one millisecond to account for next recurrence 859 // being exactly at the beginning of the year. 860 testInstant -= 1; 861 } 862 863 long next = iRecurrence.next(testInstant, standardOffset, saveMillis); 864 865 if (next > instant) { 866 year = chrono.year().get(next + wallOffset); 867 if (year > iToYear) { 868 // Out of range, return original value. 869 next = instant; 870 } 871 } 872 873 return next; 874 } 875 } 876 877 private static final class Transition { 878 private final long iMillis; 879 private final String iNameKey; 880 private final int iWallOffset; 881 private final int iStandardOffset; 882 883 Transition(long millis, Transition tr) { 884 iMillis = millis; 885 iNameKey = tr.iNameKey; 886 iWallOffset = tr.iWallOffset; 887 iStandardOffset = tr.iStandardOffset; 888 } 889 890 Transition(long millis, Rule rule, int standardOffset) { 891 iMillis = millis; 892 iNameKey = rule.getNameKey(); 893 iWallOffset = standardOffset + rule.getSaveMillis(); 894 iStandardOffset = standardOffset; 895 } 896 897 Transition(long millis, String nameKey, 898 int wallOffset, int standardOffset) { 899 iMillis = millis; 900 iNameKey = nameKey; 901 iWallOffset = wallOffset; 902 iStandardOffset = standardOffset; 903 } 904 905 public long getMillis() { 906 return iMillis; 907 } 908 909 public String getNameKey() { 910 return iNameKey; 911 } 912 913 public int getWallOffset() { 914 return iWallOffset; 915 } 916 917 public int getStandardOffset() { 918 return iStandardOffset; 919 } 920 921 public int getSaveMillis() { 922 return iWallOffset - iStandardOffset; 923 } 924 925 /** 926 * There must be a change in the millis, wall offsets or name keys. 927 */ 928 public boolean isTransitionFrom(Transition other) { 929 if (other == null) { 930 return true; 931 } 932 return iMillis > other.iMillis && 933 (iWallOffset != other.iWallOffset || 934 //iStandardOffset != other.iStandardOffset || 935 !(iNameKey.equals(other.iNameKey))); 936 } 937 } 938 939 private static final class RuleSet { 940 private static final int YEAR_LIMIT; 941 942 static { 943 // Don't pre-calculate more than 100 years into the future. Almost 944 // all zones will stop pre-calculating far sooner anyhow. Either a 945 // simple DST cycle is detected or the last rule is a fixed 946 // offset. If a zone has a fixed offset set more than 100 years 947 // into the future, then it won't be observed. 948 long now = DateTimeUtils.currentTimeMillis(); 949 YEAR_LIMIT = ISOChronology.getInstanceUTC().year().get(now) + 100; 950 } 951 952 private int iStandardOffset; 953 private ArrayList<Rule> iRules; 954 955 // Optional. 956 private String iInitialNameKey; 957 private int iInitialSaveMillis; 958 959 // Upper limit is exclusive. 960 private int iUpperYear; 961 private OfYear iUpperOfYear; 962 963 RuleSet() { 964 iRules = new ArrayList<Rule>(10); 965 iUpperYear = Integer.MAX_VALUE; 966 } 967 968 /** 969 * Copy constructor. 970 */ 971 RuleSet(RuleSet rs) { 972 iStandardOffset = rs.iStandardOffset; 973 iRules = new ArrayList<Rule>(rs.iRules); 974 iInitialNameKey = rs.iInitialNameKey; 975 iInitialSaveMillis = rs.iInitialSaveMillis; 976 iUpperYear = rs.iUpperYear; 977 iUpperOfYear = rs.iUpperOfYear; 978 } 979 980 public int getStandardOffset() { 981 return iStandardOffset; 982 } 983 984 public void setStandardOffset(int standardOffset) { 985 iStandardOffset = standardOffset; 986 } 987 988 public void setFixedSavings(String nameKey, int saveMillis) { 989 iInitialNameKey = nameKey; 990 iInitialSaveMillis = saveMillis; 991 } 992 993 public void addRule(Rule rule) { 994 if (!iRules.contains(rule)) { 995 iRules.add(rule); 996 } 997 } 998 999 public void setUpperLimit(int year, OfYear ofYear) { 1000 iUpperYear = year; 1001 iUpperOfYear = ofYear; 1002 } 1003 1004 /** 1005 * Returns a transition at firstMillis with the first name key and 1006 * offsets for this rule set. This method may return null. 1007 * 1008 * @param firstMillis millis of first transition 1009 */ 1010 public Transition firstTransition(final long firstMillis) { 1011 if (iInitialNameKey != null) { 1012 // Initial zone info explicitly set, so don't search the rules. 1013 return new Transition(firstMillis, iInitialNameKey, 1014 iStandardOffset + iInitialSaveMillis, iStandardOffset); 1015 } 1016 1017 // Make a copy before we destroy the rules. 1018 ArrayList<Rule> copy = new ArrayList<Rule>(iRules); 1019 1020 // Iterate through all the transitions until firstMillis is 1021 // reached. Use the name key and savings for whatever rule reaches 1022 // the limit. 1023 1024 long millis = Long.MIN_VALUE; 1025 int saveMillis = 0; 1026 Transition first = null; 1027 1028 Transition next; 1029 while ((next = nextTransition(millis, saveMillis)) != null) { 1030 millis = next.getMillis(); 1031 1032 if (millis == firstMillis) { 1033 first = new Transition(firstMillis, next); 1034 break; 1035 } 1036 1037 if (millis > firstMillis) { 1038 if (first == null) { 1039 // Find first rule without savings. This way a more 1040 // accurate nameKey is found even though no rule 1041 // extends to the RuleSet's lower limit. 1042 for (Rule rule : copy) { 1043 if (rule.getSaveMillis() == 0) { 1044 first = new Transition(firstMillis, rule, iStandardOffset); 1045 break; 1046 } 1047 } 1048 } 1049 if (first == null) { 1050 // Found no rule without savings. Create a transition 1051 // with no savings anyhow, and use the best available 1052 // name key. 1053 first = new Transition(firstMillis, next.getNameKey(), 1054 iStandardOffset, iStandardOffset); 1055 } 1056 break; 1057 } 1058 1059 // Set first to the best transition found so far, but next 1060 // iteration may find something closer to lower limit. 1061 first = new Transition(firstMillis, next); 1062 1063 saveMillis = next.getSaveMillis(); 1064 } 1065 1066 iRules = copy; 1067 return first; 1068 } 1069 1070 /** 1071 * Returns null if RuleSet is exhausted or upper limit reached. Calling 1072 * this method will throw away rules as they each become 1073 * exhausted. Copy the RuleSet before using it to compute transitions. 1074 * 1075 * Returned transition may be a duplicate from previous 1076 * transition. Caller must call isTransitionFrom to filter out 1077 * duplicates. 1078 * 1079 * @param saveMillis savings before next transition 1080 */ 1081 public Transition nextTransition(final long instant, final int saveMillis) { 1082 Chronology chrono = ISOChronology.getInstanceUTC(); 1083 1084 // Find next matching rule. 1085 Rule nextRule = null; 1086 long nextMillis = Long.MAX_VALUE; 1087 1088 Iterator<Rule> it = iRules.iterator(); 1089 while (it.hasNext()) { 1090 Rule rule = it.next(); 1091 long next = rule.next(instant, iStandardOffset, saveMillis); 1092 if (next <= instant) { 1093 it.remove(); 1094 continue; 1095 } 1096 // Even if next is same as previous next, choose the rule 1097 // in order for more recently added rules to override. 1098 if (next <= nextMillis) { 1099 // Found a better match. 1100 nextRule = rule; 1101 nextMillis = next; 1102 } 1103 } 1104 1105 if (nextRule == null) { 1106 return null; 1107 } 1108 1109 // Stop precalculating if year reaches some arbitrary limit. 1110 if (chrono.year().get(nextMillis) >= YEAR_LIMIT) { 1111 return null; 1112 } 1113 1114 // Check if upper limit reached or passed. 1115 if (iUpperYear < Integer.MAX_VALUE) { 1116 long upperMillis = 1117 iUpperOfYear.setInstant(iUpperYear, iStandardOffset, saveMillis); 1118 if (nextMillis >= upperMillis) { 1119 // At or after upper limit. 1120 return null; 1121 } 1122 } 1123 1124 return new Transition(nextMillis, nextRule, iStandardOffset); 1125 } 1126 1127 /** 1128 * @param saveMillis savings before upper limit 1129 */ 1130 public long getUpperLimit(int saveMillis) { 1131 if (iUpperYear == Integer.MAX_VALUE) { 1132 return Long.MAX_VALUE; 1133 } 1134 return iUpperOfYear.setInstant(iUpperYear, iStandardOffset, saveMillis); 1135 } 1136 1137 /** 1138 * Returns null if none can be built. 1139 */ 1140 public DSTZone buildTailZone(String id) { 1141 if (iRules.size() == 2) { 1142 Rule startRule = iRules.get(0); 1143 Rule endRule = iRules.get(1); 1144 if (startRule.getToYear() == Integer.MAX_VALUE && 1145 endRule.getToYear() == Integer.MAX_VALUE) { 1146 1147 // With exactly two infinitely recurring rules left, a 1148 // simple DSTZone can be formed. 1149 1150 // The order of rules can come in any order, and it doesn't 1151 // really matter which rule was chosen the 'start' and 1152 // which is chosen the 'end'. DSTZone works properly either 1153 // way. 1154 return new DSTZone(id, iStandardOffset, 1155 startRule.iRecurrence, endRule.iRecurrence); 1156 } 1157 } 1158 return null; 1159 } 1160 } 1161 1162 private static final class DSTZone extends DateTimeZone { 1163 private static final long serialVersionUID = 6941492635554961361L; 1164 1165 static DSTZone readFrom(DataInput in, String id) throws IOException { 1166 return new DSTZone(id, (int)readMillis(in), 1167 Recurrence.readFrom(in), Recurrence.readFrom(in)); 1168 } 1169 1170 final int iStandardOffset; 1171 final Recurrence iStartRecurrence; 1172 final Recurrence iEndRecurrence; 1173 1174 DSTZone(String id, int standardOffset, 1175 Recurrence startRecurrence, Recurrence endRecurrence) { 1176 super(id); 1177 iStandardOffset = standardOffset; 1178 iStartRecurrence = startRecurrence; 1179 iEndRecurrence = endRecurrence; 1180 } 1181 1182 public String getNameKey(long instant) { 1183 return findMatchingRecurrence(instant).getNameKey(); 1184 } 1185 1186 public int getOffset(long instant) { 1187 return iStandardOffset + findMatchingRecurrence(instant).getSaveMillis(); 1188 } 1189 1190 public int getStandardOffset(long instant) { 1191 return iStandardOffset; 1192 } 1193 1194 public boolean isFixed() { 1195 return false; 1196 } 1197 1198 public long nextTransition(long instant) { 1199 int standardOffset = iStandardOffset; 1200 Recurrence startRecurrence = iStartRecurrence; 1201 Recurrence endRecurrence = iEndRecurrence; 1202 1203 long start, end; 1204 1205 try { 1206 start = startRecurrence.next 1207 (instant, standardOffset, endRecurrence.getSaveMillis()); 1208 if (instant > 0 && start < 0) { 1209 // Overflowed. 1210 start = instant; 1211 } 1212 } catch (IllegalArgumentException e) { 1213 // Overflowed. 1214 start = instant; 1215 } catch (ArithmeticException e) { 1216 // Overflowed. 1217 start = instant; 1218 } 1219 1220 try { 1221 end = endRecurrence.next 1222 (instant, standardOffset, startRecurrence.getSaveMillis()); 1223 if (instant > 0 && end < 0) { 1224 // Overflowed. 1225 end = instant; 1226 } 1227 } catch (IllegalArgumentException e) { 1228 // Overflowed. 1229 end = instant; 1230 } catch (ArithmeticException e) { 1231 // Overflowed. 1232 end = instant; 1233 } 1234 1235 return (start > end) ? end : start; 1236 } 1237 1238 public long previousTransition(long instant) { 1239 // Increment in order to handle the case where instant is exactly at 1240 // a transition. 1241 instant++; 1242 1243 int standardOffset = iStandardOffset; 1244 Recurrence startRecurrence = iStartRecurrence; 1245 Recurrence endRecurrence = iEndRecurrence; 1246 1247 long start, end; 1248 1249 try { 1250 start = startRecurrence.previous 1251 (instant, standardOffset, endRecurrence.getSaveMillis()); 1252 if (instant < 0 && start > 0) { 1253 // Overflowed. 1254 start = instant; 1255 } 1256 } catch (IllegalArgumentException e) { 1257 // Overflowed. 1258 start = instant; 1259 } catch (ArithmeticException e) { 1260 // Overflowed. 1261 start = instant; 1262 } 1263 1264 try { 1265 end = endRecurrence.previous 1266 (instant, standardOffset, startRecurrence.getSaveMillis()); 1267 if (instant < 0 && end > 0) { 1268 // Overflowed. 1269 end = instant; 1270 } 1271 } catch (IllegalArgumentException e) { 1272 // Overflowed. 1273 end = instant; 1274 } catch (ArithmeticException e) { 1275 // Overflowed. 1276 end = instant; 1277 } 1278 1279 return ((start > end) ? start : end) - 1; 1280 } 1281 1282 public boolean equals(Object obj) { 1283 if (this == obj) { 1284 return true; 1285 } 1286 if (obj instanceof DSTZone) { 1287 DSTZone other = (DSTZone)obj; 1288 return 1289 getID().equals(other.getID()) && 1290 iStandardOffset == other.iStandardOffset && 1291 iStartRecurrence.equals(other.iStartRecurrence) && 1292 iEndRecurrence.equals(other.iEndRecurrence); 1293 } 1294 return false; 1295 } 1296 1297 public void writeTo(DataOutput out) throws IOException { 1298 writeMillis(out, iStandardOffset); 1299 iStartRecurrence.writeTo(out); 1300 iEndRecurrence.writeTo(out); 1301 } 1302 1303 private Recurrence findMatchingRecurrence(long instant) { 1304 int standardOffset = iStandardOffset; 1305 Recurrence startRecurrence = iStartRecurrence; 1306 Recurrence endRecurrence = iEndRecurrence; 1307 1308 long start, end; 1309 1310 try { 1311 start = startRecurrence.next 1312 (instant, standardOffset, endRecurrence.getSaveMillis()); 1313 } catch (IllegalArgumentException e) { 1314 // Overflowed. 1315 start = instant; 1316 } catch (ArithmeticException e) { 1317 // Overflowed. 1318 start = instant; 1319 } 1320 1321 try { 1322 end = endRecurrence.next 1323 (instant, standardOffset, startRecurrence.getSaveMillis()); 1324 } catch (IllegalArgumentException e) { 1325 // Overflowed. 1326 end = instant; 1327 } catch (ArithmeticException e) { 1328 // Overflowed. 1329 end = instant; 1330 } 1331 1332 return (start > end) ? startRecurrence : endRecurrence; 1333 } 1334 } 1335 1336 private static final class PrecalculatedZone extends DateTimeZone { 1337 private static final long serialVersionUID = 7811976468055766265L; 1338 1339 static PrecalculatedZone readFrom(DataInput in, String id) throws IOException { 1340 // Read string pool. 1341 int poolSize = in.readUnsignedShort(); 1342 String[] pool = new String[poolSize]; 1343 for (int i=0; i<poolSize; i++) { 1344 pool[i] = in.readUTF(); 1345 } 1346 1347 int size = in.readInt(); 1348 long[] transitions = new long[size]; 1349 int[] wallOffsets = new int[size]; 1350 int[] standardOffsets = new int[size]; 1351 String[] nameKeys = new String[size]; 1352 1353 for (int i=0; i<size; i++) { 1354 transitions[i] = readMillis(in); 1355 wallOffsets[i] = (int)readMillis(in); 1356 standardOffsets[i] = (int)readMillis(in); 1357 try { 1358 int index; 1359 if (poolSize < 256) { 1360 index = in.readUnsignedByte(); 1361 } else { 1362 index = in.readUnsignedShort(); 1363 } 1364 nameKeys[i] = pool[index]; 1365 } catch (ArrayIndexOutOfBoundsException e) { 1366 throw new IOException("Invalid encoding"); 1367 } 1368 } 1369 1370 DSTZone tailZone = null; 1371 if (in.readBoolean()) { 1372 tailZone = DSTZone.readFrom(in, id); 1373 } 1374 1375 return new PrecalculatedZone 1376 (id, transitions, wallOffsets, standardOffsets, nameKeys, tailZone); 1377 } 1378 1379 /** 1380 * Factory to create instance from builder. 1381 * 1382 * @param id the zone id 1383 * @param outputID true if the zone id should be output 1384 * @param transitions the list of Transition objects 1385 * @param tailZone optional zone for getting info beyond precalculated tables 1386 */ 1387 static PrecalculatedZone create(String id, boolean outputID, ArrayList<Transition> transitions, 1388 DSTZone tailZone) { 1389 int size = transitions.size(); 1390 if (size == 0) { 1391 throw new IllegalArgumentException(); 1392 } 1393 1394 long[] trans = new long[size]; 1395 int[] wallOffsets = new int[size]; 1396 int[] standardOffsets = new int[size]; 1397 String[] nameKeys = new String[size]; 1398 1399 Transition last = null; 1400 for (int i=0; i<size; i++) { 1401 Transition tr = transitions.get(i); 1402 1403 if (!tr.isTransitionFrom(last)) { 1404 throw new IllegalArgumentException(id); 1405 } 1406 1407 trans[i] = tr.getMillis(); 1408 wallOffsets[i] = tr.getWallOffset(); 1409 standardOffsets[i] = tr.getStandardOffset(); 1410 nameKeys[i] = tr.getNameKey(); 1411 1412 last = tr; 1413 } 1414 1415 // Some timezones (Australia) have the same name key for 1416 // summer and winter which messes everything up. Fix it here. 1417 String[] zoneNameData = new String[5]; 1418 String[][] zoneStrings = new DateFormatSymbols(Locale.ENGLISH).getZoneStrings(); 1419 for (int j = 0; j < zoneStrings.length; j++) { 1420 String[] set = zoneStrings[j]; 1421 if (set != null && set.length == 5 && id.equals(set[0])) { 1422 zoneNameData = set; 1423 } 1424 } 1425 1426 Chronology chrono = ISOChronology.getInstanceUTC(); 1427 1428 for (int i = 0; i < nameKeys.length - 1; i++) { 1429 String curNameKey = nameKeys[i]; 1430 String nextNameKey = nameKeys[i + 1]; 1431 long curOffset = wallOffsets[i]; 1432 long nextOffset = wallOffsets[i + 1]; 1433 long curStdOffset = standardOffsets[i]; 1434 long nextStdOffset = standardOffsets[i + 1]; 1435 Period p = new Period(trans[i], trans[i + 1], PeriodType.yearMonthDay(), chrono); 1436 if (curOffset != nextOffset && 1437 curStdOffset == nextStdOffset && 1438 curNameKey.equals(nextNameKey) && 1439 p.getYears() == 0 && p.getMonths() > 4 && p.getMonths() < 8 && 1440 curNameKey.equals(zoneNameData[2]) && 1441 curNameKey.equals(zoneNameData[4])) { 1442 1443 if (ZoneInfoCompiler.verbose()) { 1444 System.out.println("Fixing duplicate name key - " + nextNameKey); 1445 System.out.println(" - " + new DateTime(trans[i], chrono) + 1446 " - " + new DateTime(trans[i + 1], chrono)); 1447 } 1448 if (curOffset > nextOffset) { 1449 nameKeys[i] = (curNameKey + "-Summer").intern(); 1450 } else if (curOffset < nextOffset) { 1451 nameKeys[i + 1] = (nextNameKey + "-Summer").intern(); 1452 i++; 1453 } 1454 } 1455 } 1456 1457 if (tailZone != null) { 1458 if (tailZone.iStartRecurrence.getNameKey() 1459 .equals(tailZone.iEndRecurrence.getNameKey())) { 1460 if (ZoneInfoCompiler.verbose()) { 1461 System.out.println("Fixing duplicate recurrent name key - " + 1462 tailZone.iStartRecurrence.getNameKey()); 1463 } 1464 if (tailZone.iStartRecurrence.getSaveMillis() > 0) { 1465 tailZone = new DSTZone( 1466 tailZone.getID(), 1467 tailZone.iStandardOffset, 1468 tailZone.iStartRecurrence.renameAppend("-Summer"), 1469 tailZone.iEndRecurrence); 1470 } else { 1471 tailZone = new DSTZone( 1472 tailZone.getID(), 1473 tailZone.iStandardOffset, 1474 tailZone.iStartRecurrence, 1475 tailZone.iEndRecurrence.renameAppend("-Summer")); 1476 } 1477 } 1478 } 1479 1480 return new PrecalculatedZone 1481 ((outputID ? id : ""), trans, wallOffsets, standardOffsets, nameKeys, tailZone); 1482 } 1483 1484 // All array fields have the same length. 1485 1486 private final long[] iTransitions; 1487 1488 private final int[] iWallOffsets; 1489 private final int[] iStandardOffsets; 1490 private final String[] iNameKeys; 1491 1492 private final DSTZone iTailZone; 1493 1494 /** 1495 * Constructor used ONLY for valid input, loaded via static methods. 1496 */ 1497 private PrecalculatedZone(String id, long[] transitions, int[] wallOffsets, 1498 int[] standardOffsets, String[] nameKeys, DSTZone tailZone) 1499 { 1500 super(id); 1501 iTransitions = transitions; 1502 iWallOffsets = wallOffsets; 1503 iStandardOffsets = standardOffsets; 1504 iNameKeys = nameKeys; 1505 iTailZone = tailZone; 1506 } 1507 1508 public String getNameKey(long instant) { 1509 long[] transitions = iTransitions; 1510 int i = Arrays.binarySearch(transitions, instant); 1511 if (i >= 0) { 1512 return iNameKeys[i]; 1513 } 1514 i = ~i; 1515 if (i < transitions.length) { 1516 if (i > 0) { 1517 return iNameKeys[i - 1]; 1518 } 1519 return "UTC"; 1520 } 1521 if (iTailZone == null) { 1522 return iNameKeys[i - 1]; 1523 } 1524 return iTailZone.getNameKey(instant); 1525 } 1526 1527 public int getOffset(long instant) { 1528 long[] transitions = iTransitions; 1529 int i = Arrays.binarySearch(transitions, instant); 1530 if (i >= 0) { 1531 return iWallOffsets[i]; 1532 } 1533 i = ~i; 1534 if (i < transitions.length) { 1535 if (i > 0) { 1536 return iWallOffsets[i - 1]; 1537 } 1538 return 0; 1539 } 1540 if (iTailZone == null) { 1541 return iWallOffsets[i - 1]; 1542 } 1543 return iTailZone.getOffset(instant); 1544 } 1545 1546 public int getStandardOffset(long instant) { 1547 long[] transitions = iTransitions; 1548 int i = Arrays.binarySearch(transitions, instant); 1549 if (i >= 0) { 1550 return iStandardOffsets[i]; 1551 } 1552 i = ~i; 1553 if (i < transitions.length) { 1554 if (i > 0) { 1555 return iStandardOffsets[i - 1]; 1556 } 1557 return 0; 1558 } 1559 if (iTailZone == null) { 1560 return iStandardOffsets[i - 1]; 1561 } 1562 return iTailZone.getStandardOffset(instant); 1563 } 1564 1565 public boolean isFixed() { 1566 return false; 1567 } 1568 1569 public long nextTransition(long instant) { 1570 long[] transitions = iTransitions; 1571 int i = Arrays.binarySearch(transitions, instant); 1572 i = (i >= 0) ? (i + 1) : ~i; 1573 if (i < transitions.length) { 1574 return transitions[i]; 1575 } 1576 if (iTailZone == null) { 1577 return instant; 1578 } 1579 long end = transitions[transitions.length - 1]; 1580 if (instant < end) { 1581 instant = end; 1582 } 1583 return iTailZone.nextTransition(instant); 1584 } 1585 1586 public long previousTransition(long instant) { 1587 long[] transitions = iTransitions; 1588 int i = Arrays.binarySearch(transitions, instant); 1589 if (i >= 0) { 1590 if (instant > Long.MIN_VALUE) { 1591 return instant - 1; 1592 } 1593 return instant; 1594 } 1595 i = ~i; 1596 if (i < transitions.length) { 1597 if (i > 0) { 1598 long prev = transitions[i - 1]; 1599 if (prev > Long.MIN_VALUE) { 1600 return prev - 1; 1601 } 1602 } 1603 return instant; 1604 } 1605 if (iTailZone != null) { 1606 long prev = iTailZone.previousTransition(instant); 1607 if (prev < instant) { 1608 return prev; 1609 } 1610 } 1611 long prev = transitions[i - 1]; 1612 if (prev > Long.MIN_VALUE) { 1613 return prev - 1; 1614 } 1615 return instant; 1616 } 1617 1618 public boolean equals(Object obj) { 1619 if (this == obj) { 1620 return true; 1621 } 1622 if (obj instanceof PrecalculatedZone) { 1623 PrecalculatedZone other = (PrecalculatedZone)obj; 1624 return 1625 getID().equals(other.getID()) && 1626 Arrays.equals(iTransitions, other.iTransitions) && 1627 Arrays.equals(iNameKeys, other.iNameKeys) && 1628 Arrays.equals(iWallOffsets, other.iWallOffsets) && 1629 Arrays.equals(iStandardOffsets, other.iStandardOffsets) && 1630 ((iTailZone == null) 1631 ? (null == other.iTailZone) 1632 : (iTailZone.equals(other.iTailZone))); 1633 } 1634 return false; 1635 } 1636 1637 public void writeTo(DataOutput out) throws IOException { 1638 int size = iTransitions.length; 1639 1640 // Create unique string pool. 1641 Set<String> poolSet = new HashSet<String>(); 1642 for (int i=0; i<size; i++) { 1643 poolSet.add(iNameKeys[i]); 1644 } 1645 1646 int poolSize = poolSet.size(); 1647 if (poolSize > 65535) { 1648 throw new UnsupportedOperationException("String pool is too large"); 1649 } 1650 String[] pool = new String[poolSize]; 1651 Iterator<String> it = poolSet.iterator(); 1652 for (int i=0; it.hasNext(); i++) { 1653 pool[i] = it.next(); 1654 } 1655 1656 // Write out the pool. 1657 out.writeShort(poolSize); 1658 for (int i=0; i<poolSize; i++) { 1659 out.writeUTF(pool[i]); 1660 } 1661 1662 out.writeInt(size); 1663 1664 for (int i=0; i<size; i++) { 1665 writeMillis(out, iTransitions[i]); 1666 writeMillis(out, iWallOffsets[i]); 1667 writeMillis(out, iStandardOffsets[i]); 1668 1669 // Find pool index and write it out. 1670 String nameKey = iNameKeys[i]; 1671 for (int j=0; j<poolSize; j++) { 1672 if (pool[j].equals(nameKey)) { 1673 if (poolSize < 256) { 1674 out.writeByte(j); 1675 } else { 1676 out.writeShort(j); 1677 } 1678 break; 1679 } 1680 } 1681 } 1682 1683 out.writeBoolean(iTailZone != null); 1684 if (iTailZone != null) { 1685 iTailZone.writeTo(out); 1686 } 1687 } 1688 1689 public boolean isCachable() { 1690 if (iTailZone != null) { 1691 return true; 1692 } 1693 long[] transitions = iTransitions; 1694 if (transitions.length <= 1) { 1695 return false; 1696 } 1697 1698 // Add up all the distances between transitions that are less than 1699 // about two years. 1700 double distances = 0; 1701 int count = 0; 1702 1703 for (int i=1; i<transitions.length; i++) { 1704 long diff = transitions[i] - transitions[i - 1]; 1705 if (diff < ((366L + 365) * 24 * 60 * 60 * 1000)) { 1706 distances += (double)diff; 1707 count++; 1708 } 1709 } 1710 1711 if (count > 0) { 1712 double avg = distances / count; 1713 avg /= 24 * 60 * 60 * 1000; 1714 if (avg >= 25) { 1715 // Only bother caching if average distance between 1716 // transitions is at least 25 days. Why 25? 1717 // CachedDateTimeZone is more efficient if the distance 1718 // between transitions is large. With an average of 25, it 1719 // will on average perform about 2 tests per cache 1720 // hit. (49.7 / 25) is approximately 2. 1721 return true; 1722 } 1723 } 1724 1725 return false; 1726 } 1727 } 1728 }