1 | /* |
2 | * Copyright 2001-2005 Stephen Colebourne |
3 | * |
4 | * Licensed under the Apache License, Version 2.0 (the "License"); |
5 | * you may not use this file except in compliance with the License. |
6 | * You may obtain a copy of the License at |
7 | * |
8 | * http://www.apache.org/licenses/LICENSE-2.0 |
9 | * |
10 | * Unless required by applicable law or agreed to in writing, software |
11 | * distributed under the License is distributed on an "AS IS" BASIS, |
12 | * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. |
13 | * See the License for the specific language governing permissions and |
14 | * limitations under the License. |
15 | */ |
16 | package org.joda.time.chrono; |
17 | |
18 | import java.io.Serializable; |
19 | import java.util.HashMap; |
20 | import java.util.Map; |
21 | |
22 | import org.joda.time.Chronology; |
23 | import org.joda.time.DateTime; |
24 | import org.joda.time.DateTimeConstants; |
25 | import org.joda.time.DateTimeField; |
26 | import org.joda.time.DateTimeZone; |
27 | |
28 | /** |
29 | * Implements the Islamic, or Hijri, calendar system using arithmetic rules. |
30 | * <p> |
31 | * This calendar is a lunar calendar with a shorter year than ISO. |
32 | * Year 1 in the Islamic calendar began on July 16, 622 CE (Julian), thus |
33 | * Islamic years do not begin at the same time as Julian years. This chronology |
34 | * is not proleptic, as it does not allow dates before the first Islamic year. |
35 | * <p> |
36 | * There are two basic forms of the Islamic calendar, the tabular and the |
37 | * observed. The observed form cannot easily be used by computers as it |
38 | * relies on human observation of the new moon. |
39 | * The tabular calendar, implemented here, is an arithmetical approximation |
40 | * of the observed form that follows relatively simple rules. |
41 | * <p> |
42 | * The tabular form of the calendar defines 12 months of alternately |
43 | * 30 and 29 days. The last month is extended to 30 days in a leap year. |
44 | * Leap years occur according to a 30 year cycle. There are four recognised |
45 | * patterns of leap years in the 30 year cycle: |
46 | * <pre> |
47 | * Years 2, 5, 7, 10, 13, 15, 18, 21, 24, 26 & 29 - 15-based, used by Microsoft |
48 | * Years 2, 5, 7, 10, 13, 16, 18, 21, 24, 26 & 29 - 16-based, most commonly used |
49 | * Years 2, 5, 8, 10, 13, 16, 19, 21, 24, 27 & 29 - Indian |
50 | * Years 2, 5, 8, 11, 13, 16, 19, 21, 24, 27 & 30 - Habash al-Hasib |
51 | * </pre> |
52 | * You can select which pattern to use via the factory methods, or use the |
53 | * default (16-based). |
54 | * <p> |
55 | * This implementation defines a day as midnight to midnight exactly as per |
56 | * the ISO chronology. This correct start of day is at sunset on the previous |
57 | * day, however this cannot readily be modelled and has been ignored. |
58 | * <p> |
59 | * IslamicChronology is thread-safe and immutable. |
60 | * |
61 | * @see <a href="http://en.wikipedia.org/wiki/Islamic_calendar">Wikipedia</a> |
62 | * |
63 | * @author Stephen Colebourne |
64 | * @since 1.2 |
65 | */ |
66 | public final class IslamicChronology extends BasicChronology { |
67 | |
68 | /** Serialization lock */ |
69 | private static final long serialVersionUID = -3663823829888L; |
70 | |
71 | /** |
72 | * Constant value for 'Anno Hegirae', equivalent |
73 | * to the value returned for AD/CE. |
74 | */ |
75 | public static final int AH = DateTimeConstants.CE; |
76 | |
77 | /** A singleton era field. */ |
78 | private static final DateTimeField ERA_FIELD = new BasicSingleEraDateTimeField("AH"); |
79 | |
80 | /** Leap year 15-based pattern. */ |
81 | public static final LeapYearPatternType LEAP_YEAR_15_BASED = new LeapYearPatternType(0, 623158436); |
82 | /** Leap year 16-based pattern. */ |
83 | public static final LeapYearPatternType LEAP_YEAR_16_BASED = new LeapYearPatternType(1, 623191204); |
84 | /** Leap year Indian pattern. */ |
85 | public static final LeapYearPatternType LEAP_YEAR_INDIAN = new LeapYearPatternType(2, 690562340); |
86 | /** Leap year Habash al-Hasib pattern. */ |
87 | public static final LeapYearPatternType LEAP_YEAR_HABASH_AL_HASIB = new LeapYearPatternType(3, 153692453); |
88 | |
89 | /** The lowest year that can be fully supported. */ |
90 | private static final int MIN_YEAR = -292269337; |
91 | |
92 | /** |
93 | * The highest year that can be fully supported. |
94 | * Although calculateFirstDayOfYearMillis can go higher without |
95 | * overflowing, the getYear method overflows when it adds the |
96 | * approximate millis at the epoch. |
97 | */ |
98 | private static final int MAX_YEAR = 292271022; |
99 | |
100 | /** The days in a pair of months. */ |
101 | private static final int MONTH_PAIR_LENGTH = 59; |
102 | |
103 | /** The length of the long month. */ |
104 | private static final int LONG_MONTH_LENGTH = 30; |
105 | |
106 | /** The length of the short month. */ |
107 | private static final int SHORT_MONTH_LENGTH = 29; |
108 | |
109 | /** The length of the long month in millis. */ |
110 | private static final long MILLIS_PER_MONTH_PAIR = 59L * DateTimeConstants.MILLIS_PER_DAY; |
111 | |
112 | /** The length of the long month in millis. */ |
113 | private static final long MILLIS_PER_MONTH = (long) (29.53056 * DateTimeConstants.MILLIS_PER_DAY); |
114 | |
115 | /** The length of the long month in millis. */ |
116 | private static final long MILLIS_PER_LONG_MONTH = 30L * DateTimeConstants.MILLIS_PER_DAY; |
117 | |
118 | /** The typical millis per year. */ |
119 | private static final long MILLIS_PER_YEAR = (long) (354.36667 * DateTimeConstants.MILLIS_PER_DAY); |
120 | |
121 | /** The typical millis per year. */ |
122 | private static final long MILLIS_PER_SHORT_YEAR = 354L * DateTimeConstants.MILLIS_PER_DAY; |
123 | |
124 | /** The typical millis per year. */ |
125 | private static final long MILLIS_PER_LONG_YEAR = 355L * DateTimeConstants.MILLIS_PER_DAY; |
126 | |
127 | /** The millis of 0001-01-01. */ |
128 | private static final long MILLIS_YEAR_1 = -42521587200000L; |
129 | // -42520809600000L; |
130 | // long start = 0L - 278L * DateTimeConstants.MILLIS_PER_DAY; |
131 | // long cy = 46L * MILLIS_PER_CYCLE; // 1381-01-01 |
132 | // long rem = 5L * MILLIS_PER_SHORT_YEAR + |
133 | // 3L * MILLIS_PER_LONG_YEAR; // 1389-01-01 |
134 | |
135 | /** The length of the cycle of leap years. */ |
136 | private static final int CYCLE = 30; |
137 | |
138 | /** The millis of a 30 year cycle. */ |
139 | private static final long MILLIS_PER_CYCLE = ((19L * 354L + 11L * 355L) * DateTimeConstants.MILLIS_PER_DAY); |
140 | |
141 | /** Cache of zone to chronology arrays */ |
142 | private static final Map cCache = new HashMap(); |
143 | |
144 | /** Singleton instance of a UTC IslamicChronology */ |
145 | private static final IslamicChronology INSTANCE_UTC; |
146 | static { |
147 | // init after static fields |
148 | INSTANCE_UTC = getInstance(DateTimeZone.UTC); |
149 | } |
150 | |
151 | /** The leap years to use. */ |
152 | private final LeapYearPatternType iLeapYears; |
153 | |
154 | //----------------------------------------------------------------------- |
155 | /** |
156 | * Gets an instance of the IslamicChronology. |
157 | * The time zone of the returned instance is UTC. |
158 | * |
159 | * @return a singleton UTC instance of the chronology |
160 | */ |
161 | public static IslamicChronology getInstanceUTC() { |
162 | return INSTANCE_UTC; |
163 | } |
164 | |
165 | /** |
166 | * Gets an instance of the IslamicChronology in the default time zone. |
167 | * |
168 | * @return a chronology in the default time zone |
169 | */ |
170 | public static IslamicChronology getInstance() { |
171 | return getInstance(DateTimeZone.getDefault(), LEAP_YEAR_16_BASED); |
172 | } |
173 | |
174 | /** |
175 | * Gets an instance of the IslamicChronology in the given time zone. |
176 | * |
177 | * @param zone the time zone to get the chronology in, null is default |
178 | * @return a chronology in the specified time zone |
179 | */ |
180 | public static IslamicChronology getInstance(DateTimeZone zone) { |
181 | return getInstance(zone, LEAP_YEAR_16_BASED); |
182 | } |
183 | |
184 | /** |
185 | * Gets an instance of the IslamicChronology in the given time zone. |
186 | * |
187 | * @param zone the time zone to get the chronology in, null is default |
188 | * @param leapYears the type defining the leap year pattern |
189 | * @return a chronology in the specified time zone |
190 | */ |
191 | public static IslamicChronology getInstance(DateTimeZone zone, LeapYearPatternType leapYears) { |
192 | if (zone == null) { |
193 | zone = DateTimeZone.getDefault(); |
194 | } |
195 | IslamicChronology chrono; |
196 | synchronized (cCache) { |
197 | IslamicChronology[] chronos = (IslamicChronology[]) cCache.get(zone); |
198 | if (chronos == null) { |
199 | chronos = new IslamicChronology[4]; |
200 | cCache.put(zone, chronos); |
201 | } |
202 | chrono = chronos[leapYears.index]; |
203 | if (chrono == null) { |
204 | if (zone == DateTimeZone.UTC) { |
205 | // First create without a lower limit. |
206 | chrono = new IslamicChronology(null, null, leapYears); |
207 | // Impose lower limit and make another IslamicChronology. |
208 | DateTime lowerLimit = new DateTime(1, 1, 1, 0, 0, 0, 0, chrono); |
209 | chrono = new IslamicChronology( |
210 | LimitChronology.getInstance(chrono, lowerLimit, null), |
211 | null, leapYears); |
212 | } else { |
213 | chrono = getInstance(DateTimeZone.UTC, leapYears); |
214 | chrono = new IslamicChronology |
215 | (ZonedChronology.getInstance(chrono, zone), null, leapYears); |
216 | } |
217 | chronos[leapYears.index] = chrono; |
218 | } |
219 | } |
220 | return chrono; |
221 | } |
222 | |
223 | // Constructors and instance variables |
224 | //----------------------------------------------------------------------- |
225 | /** |
226 | * Restricted constructor. |
227 | */ |
228 | IslamicChronology(Chronology base, Object param, LeapYearPatternType leapYears) { |
229 | super(base, param, 4); |
230 | this.iLeapYears = leapYears; |
231 | } |
232 | |
233 | /** |
234 | * Serialization singleton. |
235 | */ |
236 | private Object readResolve() { |
237 | Chronology base = getBase(); |
238 | return base == null ? getInstanceUTC() : getInstance(base.getZone()); |
239 | } |
240 | |
241 | //----------------------------------------------------------------------- |
242 | /** |
243 | * Gets the leap year pattern type. |
244 | * |
245 | * @return the pattern type |
246 | */ |
247 | public LeapYearPatternType getLeapYearPatternType() { |
248 | return iLeapYears; |
249 | } |
250 | |
251 | // Conversion |
252 | //----------------------------------------------------------------------- |
253 | /** |
254 | * Gets the Chronology in the UTC time zone. |
255 | * |
256 | * @return the chronology in UTC |
257 | */ |
258 | public Chronology withUTC() { |
259 | return INSTANCE_UTC; |
260 | } |
261 | |
262 | /** |
263 | * Gets the Chronology in a specific time zone. |
264 | * |
265 | * @param zone the zone to get the chronology in, null is default |
266 | * @return the chronology |
267 | */ |
268 | public Chronology withZone(DateTimeZone zone) { |
269 | if (zone == null) { |
270 | zone = DateTimeZone.getDefault(); |
271 | } |
272 | if (zone == getZone()) { |
273 | return this; |
274 | } |
275 | return getInstance(zone); |
276 | } |
277 | |
278 | /** |
279 | * A suitable hash code for the chronology. |
280 | * |
281 | * @return the hash code |
282 | * @since 1.6 |
283 | */ |
284 | public int hashCode() { |
285 | return super.hashCode() * 13 + getLeapYearPatternType().hashCode(); |
286 | } |
287 | |
288 | //----------------------------------------------------------------------- |
289 | int getYear(long instant) { |
290 | long millisIslamic = instant - MILLIS_YEAR_1; |
291 | long cycles = millisIslamic / MILLIS_PER_CYCLE; |
292 | long cycleRemainder = millisIslamic % MILLIS_PER_CYCLE; |
293 | |
294 | int year = (int) ((cycles * CYCLE) + 1L); |
295 | long yearMillis = (isLeapYear(year) ? MILLIS_PER_LONG_YEAR : MILLIS_PER_SHORT_YEAR); |
296 | while (cycleRemainder >= yearMillis) { |
297 | cycleRemainder -= yearMillis; |
298 | yearMillis = (isLeapYear(++year) ? MILLIS_PER_LONG_YEAR : MILLIS_PER_SHORT_YEAR); |
299 | } |
300 | return year; |
301 | } |
302 | |
303 | long setYear(long instant, int year) { |
304 | // optimsed implementation of set, due to fixed months |
305 | int thisYear = getYear(instant); |
306 | int dayOfYear = getDayOfYear(instant, thisYear); |
307 | int millisOfDay = getMillisOfDay(instant); |
308 | |
309 | if (dayOfYear > 354) { |
310 | // Current year is leap, and day is leap. |
311 | if (!isLeapYear(year)) { |
312 | // Moving to a non-leap year, leap day doesn't exist. |
313 | dayOfYear--; |
314 | } |
315 | } |
316 | |
317 | instant = getYearMonthDayMillis(year, 1, dayOfYear); |
318 | instant += millisOfDay; |
319 | return instant; |
320 | } |
321 | |
322 | //----------------------------------------------------------------------- |
323 | long getYearDifference(long minuendInstant, long subtrahendInstant) { |
324 | // optimsed implementation of getDifference, due to fixed months |
325 | int minuendYear = getYear(minuendInstant); |
326 | int subtrahendYear = getYear(subtrahendInstant); |
327 | |
328 | // Inlined remainder method to avoid duplicate calls to get. |
329 | long minuendRem = minuendInstant - getYearMillis(minuendYear); |
330 | long subtrahendRem = subtrahendInstant - getYearMillis(subtrahendYear); |
331 | |
332 | int difference = minuendYear - subtrahendYear; |
333 | if (minuendRem < subtrahendRem) { |
334 | difference--; |
335 | } |
336 | return difference; |
337 | } |
338 | |
339 | //----------------------------------------------------------------------- |
340 | long getTotalMillisByYearMonth(int year, int month) { |
341 | if (--month % 2 == 1) { |
342 | month /= 2; |
343 | return month * MILLIS_PER_MONTH_PAIR + MILLIS_PER_LONG_MONTH; |
344 | } else { |
345 | month /= 2; |
346 | return month * MILLIS_PER_MONTH_PAIR; |
347 | } |
348 | } |
349 | |
350 | //----------------------------------------------------------------------- |
351 | int getDayOfMonth(long millis) { |
352 | // optimised for simple months |
353 | int doy = getDayOfYear(millis) - 1; |
354 | if (doy == 354) { |
355 | return 30; |
356 | } |
357 | return (doy % MONTH_PAIR_LENGTH) % LONG_MONTH_LENGTH + 1; |
358 | } |
359 | |
360 | //----------------------------------------------------------------------- |
361 | boolean isLeapYear(int year) { |
362 | return iLeapYears.isLeapYear(year); |
363 | } |
364 | |
365 | //----------------------------------------------------------------------- |
366 | int getDaysInYearMax() { |
367 | return 355; |
368 | } |
369 | |
370 | //----------------------------------------------------------------------- |
371 | int getDaysInYear(int year) { |
372 | return isLeapYear(year) ? 355 : 354; |
373 | } |
374 | |
375 | //----------------------------------------------------------------------- |
376 | int getDaysInYearMonth(int year, int month) { |
377 | if (month == 12 && isLeapYear(year)) { |
378 | return LONG_MONTH_LENGTH; |
379 | } |
380 | return (--month % 2 == 0 ? LONG_MONTH_LENGTH : SHORT_MONTH_LENGTH); |
381 | } |
382 | |
383 | //----------------------------------------------------------------------- |
384 | int getDaysInMonthMax() { |
385 | return LONG_MONTH_LENGTH; |
386 | } |
387 | |
388 | //----------------------------------------------------------------------- |
389 | int getDaysInMonthMax(int month) { |
390 | if (month == 12) { |
391 | return LONG_MONTH_LENGTH; |
392 | } |
393 | return (--month % 2 == 0 ? LONG_MONTH_LENGTH : SHORT_MONTH_LENGTH); |
394 | } |
395 | |
396 | //----------------------------------------------------------------------- |
397 | int getMonthOfYear(long millis, int year) { |
398 | int doyZeroBased = (int) ((millis - getYearMillis(year)) / DateTimeConstants.MILLIS_PER_DAY); |
399 | if (doyZeroBased == 354) { |
400 | return 12; |
401 | } |
402 | return ((doyZeroBased * 2) / MONTH_PAIR_LENGTH) + 1; |
403 | // return (int) (doyZeroBased / 29.9f) + 1; |
404 | // |
405 | // int monthPairZeroBased = doyZeroBased / MONTH_PAIR_LENGTH; |
406 | // int monthPairRemainder = doyZeroBased % MONTH_PAIR_LENGTH; |
407 | // return (monthPairZeroBased * 2) + 1 + (monthPairRemainder >= LONG_MONTH_LENGTH ? 1 : 0); |
408 | } |
409 | |
410 | //----------------------------------------------------------------------- |
411 | long getAverageMillisPerYear() { |
412 | return MILLIS_PER_YEAR; |
413 | } |
414 | |
415 | //----------------------------------------------------------------------- |
416 | long getAverageMillisPerYearDividedByTwo() { |
417 | return MILLIS_PER_YEAR / 2; |
418 | } |
419 | |
420 | //----------------------------------------------------------------------- |
421 | long getAverageMillisPerMonth() { |
422 | return MILLIS_PER_MONTH; |
423 | } |
424 | |
425 | //----------------------------------------------------------------------- |
426 | long calculateFirstDayOfYearMillis(int year) { |
427 | if (year > MAX_YEAR) { |
428 | throw new ArithmeticException("Year is too large: " + year + " > " + MAX_YEAR); |
429 | } |
430 | if (year < MIN_YEAR) { |
431 | throw new ArithmeticException("Year is too small: " + year + " < " + MIN_YEAR); |
432 | } |
433 | |
434 | // Java epoch is 1970-01-01 Gregorian which is 0622-07-16 Islamic. |
435 | // 0001-01-01 Islamic is -42520809600000L |
436 | // would prefer to calculate against year zero, but leap year |
437 | // can be in that year so it doesn't work |
438 | year--; |
439 | long cycle = year / CYCLE; |
440 | long millis = MILLIS_YEAR_1 + cycle * MILLIS_PER_CYCLE; |
441 | int cycleRemainder = (year % CYCLE) + 1; |
442 | |
443 | for (int i = 1; i < cycleRemainder; i++) { |
444 | millis += (isLeapYear(i) ? MILLIS_PER_LONG_YEAR : MILLIS_PER_SHORT_YEAR); |
445 | } |
446 | |
447 | return millis; |
448 | } |
449 | |
450 | //----------------------------------------------------------------------- |
451 | int getMinYear() { |
452 | return 1; //MIN_YEAR; |
453 | } |
454 | |
455 | //----------------------------------------------------------------------- |
456 | int getMaxYear() { |
457 | return MAX_YEAR; |
458 | } |
459 | |
460 | //----------------------------------------------------------------------- |
461 | long getApproxMillisAtEpochDividedByTwo() { |
462 | // Epoch 1970-01-01 ISO = 1389-10-22 Islamic |
463 | return (-MILLIS_YEAR_1) / 2; |
464 | } |
465 | |
466 | //----------------------------------------------------------------------- |
467 | protected void assemble(Fields fields) { |
468 | if (getBase() == null) { |
469 | super.assemble(fields); |
470 | |
471 | fields.era = ERA_FIELD; |
472 | fields.monthOfYear = new BasicMonthOfYearDateTimeField(this, 12); |
473 | fields.months = fields.monthOfYear.getDurationField(); |
474 | } |
475 | } |
476 | |
477 | //----------------------------------------------------------------------- |
478 | /** |
479 | * Opaque object describing a leap year pattern for the Islamic Chronology. |
480 | * |
481 | * @since 1.2 |
482 | */ |
483 | public static class LeapYearPatternType implements Serializable { |
484 | /** Serialization lock */ |
485 | private static final long serialVersionUID = 26581275372698L; |
486 | // /** Leap year raw data encoded into bits. */ |
487 | // private static final int[][] LEAP_YEARS = { |
488 | // {2, 5, 7, 10, 13, 15, 18, 21, 24, 26, 29}, // 623158436 |
489 | // {2, 5, 7, 10, 13, 16, 18, 21, 24, 26, 29}, // 623191204 |
490 | // {2, 5, 8, 10, 13, 16, 19, 21, 24, 27, 29}, // 690562340 |
491 | // {0, 2, 5, 8, 11, 13, 16, 19, 21, 24, 27}, // 153692453 |
492 | // }; |
493 | |
494 | /** The index. */ |
495 | final byte index; |
496 | /** The leap year pattern, a bit-based 1=true pattern. */ |
497 | final int pattern; |
498 | |
499 | /** |
500 | * Constructor. |
501 | * This constructor takes a bit pattern where bits 0-29 correspond |
502 | * to years 0-29 in the 30 year Islamic cycle of years. This allows |
503 | * a highly efficient lookup by bit-matching. |
504 | * |
505 | * @param index the index |
506 | * @param pattern the bit pattern |
507 | */ |
508 | LeapYearPatternType(int index, int pattern) { |
509 | super(); |
510 | this.index = (byte) index; |
511 | this.pattern = pattern; |
512 | } |
513 | |
514 | /** |
515 | * Is the year a leap year. |
516 | * @param year the year to query |
517 | * @return true if leap |
518 | */ |
519 | boolean isLeapYear(int year) { |
520 | int key = 1 << (year % 30); |
521 | return ((pattern & key) > 0); |
522 | } |
523 | |
524 | /** |
525 | * Ensure a singleton is returned if possible. |
526 | * @return the singleton instance |
527 | */ |
528 | private Object readResolve() { |
529 | switch (index) { |
530 | case 0: |
531 | return LEAP_YEAR_15_BASED; |
532 | case 1: |
533 | return LEAP_YEAR_16_BASED; |
534 | case 2: |
535 | return LEAP_YEAR_INDIAN; |
536 | case 3: |
537 | return LEAP_YEAR_HABASH_AL_HASIB; |
538 | default: |
539 | return this; |
540 | } |
541 | } |
542 | } |
543 | } |